
Confidence Estimation for Exascale Computations

Nageswara S. V. Rao
Oak Ridge National Laboratory, raons@ornl.gov

INTRODUCTION

Computations running on Exascale systems for hours are
expected to experience multiple component failures due to
the millions of components, which cannot be guaranteed to
be failure-free by the current engineering and manufacturing
practices. Indeed such failures are expected be the norm, and
all computations on them must be designed with appropriate
tolerance mechanisms such as replication, checkpointing, pro-
cess migration, domain-specific methods, and others. These
mechanisms are designed and configured for specific failure
levels, for example, triplcate code executions for robustness
against single failures. It would be very inefficient to configure
these mechanisms for the worst-case failure scenarios; rather,
they should be configured with carefully designed failure tol-
erances. But, due to the random nature of component failures,
there are no guarantees that failures will stay below these
tolerance limits during the code executions that take hours
or days. As a result, it is imperative that these computations
be provided with confidence estimates that the failures were
indeed within the tolerance limits, which in turn translate to
the confidences on code outputs.

Over the past decades, analytical methods and practical
systems have been developed to ensure robust computations
over failure-prone systems:

(a) In terms of foundational works, von Neumann [4] stud-
ied (in the 50s) the mathematical aspects of achieving
reliable computations over systems built using unreliable
components. Perhaps due to the subsequent reliability
improvements in computing systems, such studies have
not been extensively continued.

(b) In terms of deployed systems, computation in space
vehicles (deployed over the past decades) have been
enhanced with Software-Implemented Hardware Fault
Tolerance (SIHFT) methods to counteract the transient
faults in computers due to radiation exposure [1] in space
environments.

Despite the commonalities with these works that address
‘smaller” systems, the challenges of achieving robust computa-
tions on exascale computing systems are unprecedented, due to
their sheer complexity and scale. At the same time, they also
present promising opportunities for the mathematical design
and analysis methods. We outline a method that inserts diagno-
sis tracer codes into application codes to follow the execution
paths, detect faults along the way, and generate statistical
confidence estimates for the outputs [3]. We describe a set
of mathematical problems and potential solution approaches
to generate these confidence estimates to ensure that codes are
executed under the tolerance limits. While system-level profiles
can also be used for such estimation, the application traces are
more focussed in following the application execution.

ROBUST CODE EXECUTIONS

Let Si,i = 0, 1, . . . , denote the random state of the exascale
system at time step i. Typically, this is a large dimensional
vector where its components represent the status and other
properties of components of the exascale system such as
processor core, communication link or memory element. Let
SI denote the idealized system with no errors so that if Si
is error-free, we have SI ⊗ Si = 0, where ⊗ represents a
difference operation. Consider that an algorithm A executed
on system in state Si with input I produces output Si�A(I),
which is random due to the randomness of Si. The ideal fault-
free output of the algorithm is SI � A(I) corresponding to
input I , which could be random if the underlying algorithm
incorporates Monte Carlo or other random variables. Let AR
denote a robust version of A customized to be executed on an
exascale system, for example replicated version of the same
code or code augmented with different checkpoints. When
executed on a system at state Si, the output error is

E (Si,AR, I) = (SI �A(I))⊕ (Si �AR(I)) ,
where the difference operator ⊕ is appropriately chosen; for
example, it could be the Euclidean distance for codes that
produce deterministic real vector output, and a statistical
0-vector test for Monte Carlo simulations. This error may
incorporate multiple sources of randomness: (i) distribution
of input I , denoted by by PI ; (ii) distribution of the output
of algorithm AR if it contains random variables, denoted by
PAR(I), and (iii) distribution of the system state Si due to
the randomness of various failures of components, denoted by
PSi

. The expected error of the algorithm AR executed on the
exascale system in state Si is given by
ĒI(Si,AR)

=
∫
E(Si,AR, I)dPAR(I),I

=
∫
I

∫ [
(SI �A(I))⊕ (Si �AR(I)) dPSi�AR(I)|I

]
dPI .

The overall quality of computation of the algorithm AR
executed on the exascale system is given by

Ē(AR)

=
∫
E(Si,AR, I)dPSi,AR(I),I

=
∫
Si

[∫
E(Si,AR, I)dPAR(I),I|Si

]
dPSi

=
∫
Si

[∫
[(SI �A(I))⊕ (Si �AR(I))]

dPSi�AR(I),I|Si

]
dPSi

which indicates that this error can be reduced by customiz-
ing AR to exploit the state Si. A customized code to the



state estimate Ŝi is denoted by AŜi,R, and its objective

could be to ensure E
(
Si,AŜi,R, I

)
≤ E(Si,AR, I), or its

weaker versions given by ĒI
(
Si,AŜi,R

)
≤ ĒI(Si,AR) and

Ē
(
AŜi,R

)
≤ Ē(AR). The code customization may be carried

out in different ways, including, executing it only on parts of
the machine with high reliability estimates, replicating it as
in N-version programming, checkpointing, using application
specific methods, or a combination. This optimization requires
an accurate estimate Ŝi of the state Si that would be valid
during the execution of AŜi,R, which is derived from the
output of tracer codes. Let the detection modules in tracer
codes be executed Rp times per second, and P1/Rp

denote the
probability of a node failure during 1/RP seconds interval. Let
CN (α,NP ) denote the confidence that node failure probability
is less than α after Np detection steps. If f̂ is the fraction of
Np steps that detected failures, we have

CN (α,Np) = P
{∣∣∣P1/Rp

− f̂
∣∣∣ < β

}
> 1−2−1[1−(1−β)Np ]2Np

based on Hoeffdings inequality under statistical independence
of component failures. These estimates can be used to compute
the expected number of components failures during the com-
putation, and the detection information can be used to estimate
the portion of Ŝi that overlap with application execution path.

We note that AR might itself be designed to tolerate
certain types of failures, and AŜi,R represents a finer level
optimization based on the current state estimate Ŝi. Also, AR
could itself be sufficiently robust, and methods are needed to
verify such a property, for example, statistical methods that
combine outputs from multiple code runs and system failure
profiles. Computations on exascale systems must incorporate
the component failures as an integral part, for example, by
taking into account the random state estimate Ŝi. The state
vector can be used to partition the computing units of the
system into different zones based on the levels of robust-
ness and connections between the components. This task
involves two challenges: (i) stochastic optimization methods
for decomposing the set of computing units Ci of the system
based on state estimate Ŝi, and (ii) optimally mapping the
computational modules of AR or AŜi,R onto Ci based on the
robustness zones, while ensuring that module dependencies are
suitably supported. The underlying mathematical problems can
be formulated using an assignment MŜi

: AR 7→ Ci designed
to capture strategies such as restricting code executions only to
certain zones with sufficient robustness levels, replicating AR
in zones in numbers inversely proportion to their robustness
levels, and other finer module-to-unit mappings.

CONFIDENCE MEASURES FOR COMPUTATIONS

The confidence measures for outputs of AR can be gen-
erated using an estimation algorithm C such that C(Ŝi,Si �
AR(I)) ∈ [0, 1] denotes the likelihood that the output of AR
using input I corresponds to fault-free execution, namely,

C
(
Ŝi,Si �AR(I)

)
= P {(Si �AR(I)) = (SI �A(I))} ,

which is a random variable due to the distribution of input,
system state Si and estimation error in Ŝi. The overall expected

confidence is given by

C̄(Ŝi,AR) =
∫
C
(
Ŝi,Si �AR(I)

)
dPSi�AR(I),I .

Based on l executions of AR with different inputs
I1, I2, . . . , Il with known outputs we can provide confidence
measures as follows. We compute the empirical estimate

Ĉ(Ŝi,AR) =
1
l

l∑
i=1

C
(
Ŝi,Si �AR(Ii)

)
which can be shown to be close to C̄(Ŝi,AR) when the
underlying function C(.) is chosen from a class of functions
with finite scale-sensitive dimension. Extensions to this method
would be needed to exploit and account for the underlying
distributions and statistical correlations.

When the outputs of ideal code execution are not known,
one can utilize the outputs from replicated codes to generate
approximations for C

(
Ŝi,Si �AR(Ii)

)
, to be used in the

confidence measures for computations. Rigorous methods are
needed to generate such approximations based on code outputs
and the current Ŝi. For example, when the failure profiles
are close to 0-function, the agreements between the replicated
code outputs constitute a good indicator for the confidence in
the code output. While a test for such an agreement between
deterministic outputs can be based on simple differences,
codes that incorporate Monte Carlo computations or random
strategies present challenges, particularly by requiring suitable
statistical 0-tests.

We briefly describe a scenario of computations that employ
random strategies, wherein code replications used for fault
tolerance can be leveraged to derive better outputs (as a
byproduct). For applications such as stochastic search, different
outputs of replicated codes could be due to the randomness
in the search process and neither of them could be incorrect.
In such cases, different “correct” outputs can be combined
to provide an improved solution using the information fusion
methods [2]. This approach requires statistical tests to distin-
guish between the correct and erroneous code outputs, which
can be achieved by examining the confidence measures. The
methods that would identify and eliminate the “erroneous”
outputs can be formulated as statistical tests, and ones that
fuse accurate outputs can be formulated as generic information
fusion problems; existing solutions to both classes of problems
lay the foundations for enhancements needed for exascale
computations.

REFERENCES

[1] P. P. Shirvani et al. Software-implemented hardware fault tolerance
experiments: Cots in space. In Proc. International Conference on
Dependable Systems and Networks, pages 56–57. 2000.

[2] N. S. V. Rao. Measurement-based statistical fusion methods for dis-
tributed sensor networks. In S. S. Iyengar and R. R. Brooks, editors,
Distributed Sensor Networks. Chapman and Hall/CRC Publishers, 2011.
2nd Edition.

[3] N. S. V. Rao. Chaotic-identity maps for robustness estimation of exascale
computations. In 2nd Workshop on Fault-Tolerance for HPC at Extreme
Scale (FTXS 2012), 2012.

[4] J. von Neumann. Probabilistic logics and the synthesis of reliable organ-
isms from unreliable components. In C. E. Shannon and J. MaCarthy,
editors, Automata Studies. Princeton University Press, 1956.


